Kernel Analysis for Noisy Microarray Data
نویسندگان
چکیده
Microarray technique measures gene expression levels under various conditions, simultaneously. Microarray data are successfully analyzed by kernel methods for a variety of applications. A major drawback of microarray is technically error prone. To gain accurate analysis, we propose a method which produces a noise-tolerant kernel matrix. First of all, we devise a new distance function for microarray data. The distance function is robust to noise, but not metric. Although we need a kernel matrix to apply kernel methods, yet construction of a kernel matrix from the non-metric distances is not an easy task. Our algorithm for building a kernel matrix is based on a maximum-entropy method using constraints derived from the distances. Promising results are shown in classification and network inference. kernel methods, microarray data, partial distance, maximum entropy method, network inference
منابع مشابه
Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملIdentification of Alzheimer disease-relevant genes using a novel hybrid method
Identifying genes underlying complex diseases/traits that generally involve multiple etiological mechanisms and contributing genes is difficult. Although microarray technology has enabled researchers to investigate gene expression changes, but identifying pathobiologically relevant genes remains a challenge. To address this challenge, we apply a new method for selecting the disease-relevant gen...
متن کاملGene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method
Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...
متن کاملProtection Scheme of Power Transformer Based on Time–Frequency Analysis and KSIR-SSVM
The aim of this paper is to extend a hybrid protection plan for Power Transformer (PT) based on MRA-KSIR-SSVM. This paper offers a new scheme for protection of power transformers to distinguish internal faults from inrush currents. Some significant characteristics of differential currents in the real PT operating circumstances are extracted. In this paper, Multi Resolution Analysis (MRA) is use...
متن کاملMicroarray missing values imputation methods: Critical analysis review
Gene expression data often contain missing expression values. For the purpose of conducting an effective clustering analysis and since many algorithms for gene expression data analysis require a complete matrix of gene array values, choosing the most effective missing value estimation method is necessary. In this paper, the most commonly used imputation methods from literature are critically re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006